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It is shown that the formation of the so-called rotator phase of alkanes (one of the high tempera
ture crystalline phases) might be connected with a partial increase of the conformational flexibility 
of chains. The conformatior.s with higher number of kinks per chain, which have been neglected 
till now, are shown to contribute effectively to the conformational partition function. Small 
probability of these states given by the Boltzmann exponent is compensated by a large number 
of ways in which they can be distributed along the chain. The deduced features of the rotator 
phase seem to be in agreement with the experimentally observed properties. 

The behaviour of chain molecules and/or chain parts of molecules becomes the 
subject of primary interest in several fields. We can mention the properties of poly
mers, condensed phases of alkanes, mesomorphism of thermotropic and lyotropic 
liquid crystals, etc.!. 

The modelling of the structure and behaviour of chain molecules in condensed 
phases is a very obscure problem. In addition to the anisotropy of interaction of 
chains as hard rods, they can, under specific conditions, change their shape due 
to internal rotation around simple bonds. However, as it has been stressed, this 
internal rotation differs from the conformational motions of an isolated molecule2 ,3. 

The steric and packing effects of condensed surrounding influence the molecular 
conformational equilibrium. 

In the present paper we try to give a qualitative model of one of the high tempera
ture crystalline phases of alkanes known as the rotator phase. The rotator phase, 
or the D-crystalline modification appears in the phase diagrams of alkanes with the 
number of segments, N E (21; 45), as the last crystal-like structure before melting 
to an isotropic liquid4 ,5. 

Molecular mechanics calculations (MMC) have proved competent for the investi
gation of flexibility, mobility and interaction of alkanes6 ,7. This method enables us 
to obtain correct values of the potential energy barriers for different motions of the 
chain in a condensed phase. According to MMC simulations the most hindered 
motion of the chain in condensed surroundings is the internal rotations. The average 
number of the so-called kink deformations (g±tg+) per chain is not greater than tw0 9 • 

Therefore, it has been concluded that a partial increase of the conformational flexibi-
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lity in the rotator phase does not have any convincing influence on its appearances, 
10,11 

In the present paper it is shown using a simple model that the increase of the en
tropy caused by the partial increase of conformational flexibility can be greater 
than originally thought. At first we investigate qualitatively the shape of the potential 
energy field of the nearest neighbours acting on the molecule. Then a formula is 
derived for the calculation of the number of possible ways in which the given con
formational defect can be effected. In the last part of the paper the deduced proper
ties of the model rotator phase are confronted with the experimental data. It was 
found that the increase in the conformational flexibility might be the origin of the 
creation of the rotator phase. 

THEORETICAL 

Potential Energy of Molecule in the Field of Nearest Neighbours 

For evaluating possibilities of conformational motions in condensed phases it is 
necessary to know the geometric shape of the field of nearest neighbours which acts 
on each molecule of the ensemble. In the present work we do not want to know 
the exact numerical values of this potential in any place. Rather, we try to elucidate 
how the geometry of this field changes when unit cells of the crystalline structure 
are expanded. Such an expansion was observed in transitions to high-temperature 
crystalline phasess. Therefore, in this section we use some hypothetical, but qualitati
vely correct potentials. 

Without lengthy numerical calculations, it is clear from Fig. 1 that the interaction 
of alkanes in configuration b is stronger than in configuration a. Due to this, it is 
sufficient to study the influence of the nearest neighbours placed in a two-dimensional 
lamella. According to experimental data, the individual lamellae in the rotator phase 
possess a hexagonal symmetryS,6,9. This means that each molecule has six nearest 
neighbours. Thus, the model aggregate we are interested in consists of seven mole
cules (Fig. 2). 

Finally, it is possible to use the last simplification: the molecular pair interaction 
of all-trans alkanes in configuration b can be divided by the number of chain seg
ments to obtain the shape of pair interaction field per chain site. A similar approxima
tion was used several years ago by Salemll . Although it is clear that this approxima
tion is not exact, since the interaction between central segments should differ from 
the interaction of chain-end segments, it is a very useful "first" approximation. 
Fig. 3 shows the dependence of this "hypothetical" pair potential per segment on 
molecular separation. 

Now, let us analyze the shape of interaction energy of the individual segments 
in the aggregate. Let the separation between alkanes in the aggregate be equal to 

Col/ection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



Model Rotator Phase 891 

the distance r m. where the potential in Fig. 3 has its minimum. Fig. 4 shows how it is 
possible to obtain the potential energy field acting on the segment of the central 
molecule by adding individual pair interactions from Fig. 3. The potential field 
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The shape of molecular pair interaction of parallel hard chains in two basic configurations: a 
long chain axes are parallel with the axis joining the mass centres; b long chain axes are perpendi
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A typical structure of the nearest surrounding 
of chains in the lamellae of the rotator phase 
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The shape of the hypothetical pair molecule 
potential per segment in dependence on the 
separation between chains in configuration b 
(see Fig. 1) 
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along the axes 0' and 0" of the hexagon has the same shape. As can be seen, the 
interaction energy has a sharp minimum in the centre of the hexagon. The equi
potential energy lines have approximately the shape of concentric circles. The radius 
10 with the potential energy equal to zero determines the cylinder where the segments 
are most likely situated. 
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The resulting shape of the potential of a 
segment of the central molecule in the 
hexagon along the axis 0, c, is given by the 
sum of interactions in Q and twice the inter
action in b. The separation between the 
molecules in the hexagon is r m 

a 
o 

• • 

b .. ~. 
". 0 

........."", ••.•• ;>' •. 

c 
o 

2R 

, , '8: 
FlO. 5 

The same as in Fig. 4 for the expanded 
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The changes of the potential energy field after the symmetric expansion of the 
hexagon are clearly visible from Fig. 5. Instead of a one-point minimum of the 
interaction, one obtains a closed line (nearly a circle with radius R), where the 
potential energy reaches its minimum. In the place of the previous minimum in the 
centre there is a local maximum now. The zero energy radius 10 also increases with 
the hexagon expansion. 

If the radius of the minimum energy, R, equals zero (most condensed hexagon), 
any conformational transition of the chain transforms one or more segments beyond 
the cylinder 10 , This means that the only possible conformation of the chain is the 
all-trans state. The least disturbing conformation which can be found by the ex
pansion of the hexagon is the so-called kink state (g±tg+). To make this conforma
tion possible the diameter of the circle of the zero energy, L = 2/0 , should be equal 
to the distance between the parallel long axes of the two parts of the chain separated 
by the kink, d 0·2 nm, Fig. 6. In such a cylinder the isolated gauche states of the 
second and third bonds from both ends of the chain are also possible. According to 
Helfand 12 , one can find the isolated gauche state in the middle part of the alkane 
on condition that the neighbour bonds and bond angles are slightly deformed. For 
the sake of simplicity, however, we consider kinks as the only possible conformational 
deformation in the hexagon expanded to a distance (r m + ~lo), where ~10 is the 
difference between the radii of zero energy of the most condensed and expanded 
hexagons. 

Fro. 6 

Schematic view of the chain divided by kink 
into two parallel parts 
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Now it is necessary to confirm whether this expansion corresponds to the known 
structure of the rotator phase. According to the experimental data, the averaged 
distance between two alkanes in the lamella of the rotator phase is 0·48 nm (refs5 •8 •13). 

We will turn to the previously obtained MMC results14 to show that the formation 
of kinks is possible with these dimensions. (The rotation round the central bond 
of hexane simulates the main features of the creation of kinks.) 

The numerical MMC results show that no internal rotation is possible, when 
the dimension of the hexagon, r, is 0·48 nm (ref. 14). The kinks are no more hindered 
by r 0·52 nm (illo = r - r m = 0·07 nm) and become even stabilized (i.e. more 
probable than all-trans) by r 0·64 nm (R = r - rm = 0·19 nm). Nevertheless, these 
results are artefacts of the model of calculation used since one part of the central 
hexane is always fixed in the centre of the hexagon. In that case the inevitable ex
pansion of the hexagon is such that the radius of the circle, R, is equal to the "kink 
distance", d. If the position of neither chain part is fixed (the present model), one 
needs only R = d/2 == 0·1 nm. Similarly, for the unhindered kinks it is satisfactory 
if the hexagon is expanded to the distance 0·485 nm (r = r m + illo/2 == r m + 0'35). 
This is in good agreement with the experimental data obtained on the rotator phase. 

The "geometric" view of the potential energy field explains also why the kinks 
are even stabilized in comparison to the all-trans conformation in the previous 
model14: in the all-trans state all segments are in the middle of the hexagon, where 
the potential energy has the local maximum. The translation of segments which are 
separated by the kink from the centre-fixed part of the hexagon to the region of the 
minimum of potential energy leads to energy stabilization. This effect has been clas
sified as the "intermolecular" anomeric effect14. As is clear from present considera
tions, this effect cannot be observed in the ensembles of real alkanes. In contrast 
to previous results, each kink should lead to an increase of intermolecular potential 
by 2 ilu, since the two central segments of the kink are placed in the region where the 
energy has the local maximum. (Correct only qualitatively since with a change of 
conformation the energy value per segment also somewhat changes.) 

The total value of the energy increase caused by the kink transition is 

illflt = 2 ilu + 2 ilUgt • (1) 

The term ilUgt is the internal energy difference between trans and gauche states 
of the simple bond in an isolated alkane. 

The number of Rotational States of the Chain with a Kinks 

We have shown in the previous part that due to the change of the surrounding 
energy field it is possible to find the chain with one or more kinks in the rotator 
phase. The presence of a kinks in the chain increases its energy by a . illflt. Before 
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the conformational partition sum is calculated, it is necessary to know the number 
of possible ways in which a kinks can be placed on the chain consisting of N seg
ments. The recursive formula for the calculation of the number of ways in which a 
gauche states can be distributed along the chain has been derived elsewhere15• 

Due to intermolecular forces, however, not all these states are allowed in the con
densed phase. In the first part of this section we therefore derive a formula for the 
calculation of the number of possible distributions of a gauche states on condition 
that the neighbouring bonds ((i - l)-th and (i + l)-th) of the i-th bond in the gauche 
state are inevitably in trans conformation. In comparison to the previous work15, 

the possibility of g±g±sequence is also neglected. 
The number of simple C-C bonds in the alkane consisting of N segments is 

(N - 1). Since it is not possible, due to the symmetry of -CH3' to distinguish 
between g+, t, g- during the rotation of end groups, the actual number of bonds 
involved in the conformational analysis, N', is N - 3. 

Each chain of any length can be in one all-trans conformation. The number of 
possible ways in which one gauche state (g+ or g-) can be placed on the chain of N 
segments is 

n 1 = 2N'. (2) 

Let us now derive an expression for the number of ways of the appearance of two 
gauche states on the chain. Due to the correlation of the neighbouring bonds the 
minimal number of bonds, N:nin, at which two gauche can be placed, is three (i.e. 
N = 3 + 3). It can be generalized for a gauche states 

(3) 

The number of the possible ways of distribution of the two gauche states is 

N'-t 

n2 = 4 L (N' - i) . (4) 
i=2 

If one g state is placed on the first bond, then the second g state can be found on any 
of the (N' - 2) bonds. If the first g state is on the second bond, there are (N' - 3) 
free bonds for the second gauche, etc. The coefficient 4 = 2Q; a equal to 2 means that 
there are two possibilities for each gauche state g+ and g-. 

By analogy with Eq. (4) for the occurrence of three, four and five gauche states 
on the chain, one obtains 

N'-t 

n3 = 23 L (N' - bo)(bo - 3) , (5) 
bo=4 
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N'-lbo-2 

n4 = 24 L L (N' - bo)(bo - 1 - b1), (6) 
bo= 6 b, =4 

N'-1 bo-2 

n, = 25 I L (N' - bo)(bo - 1 - b1)(b 1 - 1 - b2 ) • (7) 
bo=8 b,=6 

The lowest values of b. in the sums are b. = 2(a - s) - 2; s = 0,1,2. 

Relations (3)-(7) can be generalized for the calculation of the possible ways 
in which a gauche states can be placed on the chain consisting of N' bonds: 
for even a 

na = 2a L I .. · I(N' - bo)(bo - 1 - bl) ... (b'-1 - 1 - b.), (8a) 
bo b, b. 

for odd a 

na = 2u IL .. · I(N' - bo)(bo - 1 - bl) ... (b s - 1 - b.+ 1), (8b) 
bo b, b. 

where s = Int {a/2} - 1 and b i = 2( a - i) - 2. The maximum number of gauche 
states in the considered chain is given by the integer part of am = Int (N' + 1)/2. 

On the basis of similar considerations one obtains the number of the possible 
ways of distribution of a kinks (g±tg'f) in the form 
for even a 

n~ = 2u I I ... I(N' - b~)(b~ - 3 - b~) .. (b~_1 - 3 - b:), (9a) 
bok b,k b.k 

for odd a 

with s = Int {a/4} - 1 and b~ = 4(a - i) - 2. 

Relations (8) and (9) differ in bs and b: values. The occurrence of kink determines 
fixed states of longer chain parts and therefore the number n~ is always smaller than 
na for a given chain. In contrast to the recursive formula l5 , Eqs (8) and (9) allow 
to calculate the number of the conformation states with a deformations on the chain 
of N segments without the knowledge of the number of previous states with (a - i) 
deformations. 

The Conformational Partition Sum 

Eq. (9) gives the number of possible ways of distribution of a kinks irrespective of 
their space orientation. A closer look at Fig. 6 shows that the second kink separated 
by at least one bond in the trans state can put the rest of the chain beyond the cylinder 
with a radius 10 (even if the orientation and position of individual chain segments 
is not fixed in the cylinder). Therefore, in the hard molecule model (the bond lengths, 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



Model Rotator Phase 897 

bond angles and dihedral angles are fixed) the orientation of existing kinks is cor
related. Hence, not all the possibilities of the distribution of kinks, n~, are allowed. 
The new number of ways of distribution of kinks fi! should differ in the multiplying 
factor standing in front of the summation sign of Eq. (9). The orientation of the first 
kink determines the orientation of all consecutive kinks, i.e. instead of 2a there 
should be the factor 2 . 1 a. The summation itself is not changed, since it is determined 
only by the position of the kinks along the chain and not by their orientation. 

Nevertheless, alkanes are known to possess intramolecular flexibility. The energy 
needed for slight deformations of dihedral and bond angles, as well as bond lengths, 
is relatively small, although the change of the resulting molecular shape can be rather 
large. Therefore, one can consider the orientation of individual kinks along the chain 
to be quite independent. In this case the number of possible states is given by n! 
from Eq. (9). All n! states, however, can be observed at higher energy, W = Ai1I1 + U d' 

The term U d represents the energy needed for intramolecular deformation:;. 

Some years ago Helfand considered the possibility of occurrence of one gauche 
state on the chain in the condensed state. In gauche the chain is divided into two 
parts, long axes of which are not parallel. In the hard molecule model the existence 
of an isolated gauche state is not allowed due to the intermolecular repulsion of the 
surroundings. However, Helfand showed that the energy of intramolecular deforma
tions (mainly bond lengths and angles) which are needed to make the isolated gauche 
state possible is not greater than that of additional gauche, i.e. the energy of one 
gauche in condensed surroundings is approximately equal to the energy of the kink 
state12 . 

Returning to our problem, the long axes of the chain parts separated by kinks 
are always parallel, irrespectively of the mutual orientation of individual kinks. 
Therefore, we suppose that the intramolecular deformation energy needed for 
orientationally independent kinks is not greater than AUgt • The a-th contribution 
to the conformational partition sum is then given by the integral 

Z(a) = K fW exp (-x/kT) n!(x) dx. 
<111 

(10) 

The expression under the integral is the product of two functions. The exponential 
function exp (-x/kT) decreases in the integration interval. The function n!(x) is 
equal to fi! in the left limit of integration and is equal to n! at least in the right limit. 
Between these two limits the function n!(x) increases. From the available data it is 
not possible to evaluate exactly the shape of the function exp (-x/kT) . n!(x). 
Therefore, we propose to replace the value of integral (10) by the expression 

Za = exp ( - a AJ7I/kT) . n! . (11) 
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The conformation partition sum is then given in the form 

Zeonf = L exp ( - a dOUkjTj . n; . (12) 
a 

Eq. (12) represents, according to our opinion, the lower estimate of the actual value 
of conformational partition function. Even if the function under the integral sign 
decreases and Za is greater than the integral (10), Eq. (12) cannot exceed the con
formational contribution since all the conformational states with the exception of 
the kinks are neglected. 

As can be seen, each term of sum (12) is given by the product of two functions 
of a. With increasing number of kinks the Boltzmann exponent exp (-a dUlkT) 
decreases and, in some limits, the number of the rotational states increases. Fig. 7 
shows the decrease of the Boltzmann exponent as a function of a for 2 dU gt 5·8 kJ Imol 
and T 320 K (refs9 •16). It also shows the shape of functions In (n!) depending on a 
for alkanes of different length N. As can be seen, the functions n! have maxima 
at li equal to am/2. For the alkanes N > 20 the increase of the function n! in the 
interval (0, li) is comparable, or even more rapid than the decrease of the corres
ponding Boltzmann exponent. 

In all studies published so far, the main attention was concentrated on the de
pendence of the Boltzmann exponent, which describes the one-molecule averaged 

15· -15 

In n~ -a6'UlkT 

5 -5 

o o 

a 

FIG. 7 

Dependence of n~ on the number of kink defects a on a logarithmic scale for N = 21 (0), N = 31 
(~) and N = 41 (e) compared with the dependence of the Boltzmann exponent on a on the same 
scale 
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probability of the occurrence of a kink defects on the chain. The average number 
of kinks per chain is accordingly a little lower than two, in agreement with the experi
ment. On the basis of small probability it was deduced that it is not necessary to 
consider the conformations with greater number of kinks for a correct description 
of the phase transition. The resulting computed change of the conformational part 
of free energy, F, was smaller than the experimentalIy observed value. One therefore 
needs mechanisms additional to the conformational flexibility which would co
operate in the phase transition. 

For example, BaurlO has found that one kink contribution to the entropy change 
during the transition represents about 30% of the experimentally measured change. 
As is clear from our qualitative analysis for alkanes with N > 20, "little" probable 
states with a greater number of kinks a > 2 bring a rather large contribution to 
the partition sum Z, Fig. 7. We can thus conclude that the origin of the rotator 
phase might lie in the increase in the conformational entropic part of the free energy1 5, 

Sconf = k. In Zconf + {6/JlJjkT}jZconf La. exp {-a 6.dlJjkT} n: , (13) 
• 

since the whole-molecule rotational and translational motions are partly released 
in the preceding high-temperature crystalline phases. The numerical estimate per
formed on the basis of Eq. (13) shows that in comparison to BaurlO the change of 
conformational entropy represents about 90% of the increase in the phase transition 
entropy. 

DISCUSSION 

In this part we would like to discuss and compare the properties of the rotator 
phase which can be deduced from the simple qualitative model with experimental 
data. Using the X-ray diffraction technique, the structure of the crystalline state of 
different alkanes at different temperatures was ascertaineds.13.17. In all cases the 
dimensions of the crystal unit cell increase with increasing temperature (crystal 
A -+ crystal B, crystal B -+ crystal C). This expansion is approximately symmetric 
in all directions. The only exception to the symmetric expansion is the phase transi
tion crystal C -+ crystal D (rotator phase). During this transition, the separation 
of neighbouring molecules in the lamella is expanded, but the distance between the 
individual lamellae becomes smaller. This decrease of the interlamellar separation 
on an assumption that the amplitudes of vibrations of the mass centre increase in all 
directions is possible only if the effective chain length is shorter. This shortening can 
exceptionally be caused by a change of the conformational equilibrium structure 
of chains. By one kink to the chain the projection of the C-C bond on the long 
molecular axis is shortened by approximately 1·2 times. 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



900 Sebek: 

Up to now, we have been concerned with the equilibrium structure, where at the 
average internal energy value there are two kinks per chain. Nevertheless, due to 
energy fluctuations in the ensemble the states with a greater number of kinks on 
one chain and with no kinks on the nearest neighbours are also possible. Since 
with increasing N' the function n~ increases more rapidly, the probability of such 
fluctuations also increases. Therefore, with increasing N', the difference in the length 
between the all-trans, the averaged and the instantaneous conformations also 
increase. This means that the dispersion of the length of chains which form the 
ensemble increases. Too much free space per molecule triggers additional intra
and inter-molecular motions resulting in the break-down of the crystalline structure. 
On this basis we conclude that there should exist an upper limit N above which 
the alkanes do not form the rotator phase. According to experimental data, the 
chains with N > 45 really cannot form the rotator phases,9. The maximum number 
of kinks in alkanes with N = 45 is ten. This means that the all-trans conformation 
and the conformation with the greatest possible number of kinks differ by more 
than one fourth of the maximal chain length. 

Using current NMR and JR spectroscopy, it is possible to measure even the 
probabilities of gauche states for individual chain segments1 ,9,18-21. According 
to recent results of Maroncelli et a1.9 , the most probable states in ensembles of 
alkanes of different length in the rotator phase are the gauche states at chain ends. 
Towards the middle of the chain their occurrence becomes less likely. The authors 
explain this probability profiles as a result of increasing disorder of the interlamellar 
structure9 • 

According to our simple model allowing only kink deformations, the probability 
or the gauche state occurrence should be the same for all segments. We will show 
now that after removing most imprecise approximations of the model, it is possible 
to explain qualitatively the experimentally observed profiles. 

First of all, in our simple model we were limited to kink deformations as the only 
possibility of conformational transition. Nevertheless, it is clear that in the case 
of the existence of kinks, creation of isolated gauche states of the second and third 
bonds at both ends of alkanes also becomes possible. This effect increases the 
measured likeliness of gauche states at chain ends. Another reason for the greater 
probability of g states at chain ends is connected with molecular interactions. Divi
sion of the whole-molecule interaction by the number of segments makes all-CH2-

sites equivalent from the point of view of intermolecular forces. However, it was 
made clear when introducing this approximation that the potential energy of the 
segment from the central part of the chain should be greater than the energy of the 
segment from the chain end. This is caused by a greater number of -CH2- seg
ments of the neighbouring molecules (interaction sites) which are at the optimal 
interaction distance. Therefore, for the end segments of the central molecule the 
term Llu caused by surrounding molecules is the smallest. Towards the chain center 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



Model Rotator Phase 901 

the actual value Au per segment should increase up to some constant value Aum • 

This maximal value is determined by the geometrical structure of chains which limits 
the maximal number of the nearest molecular interaction sites. The difference in 
Au determines the probability of g states along the chain, in agreement with the 
experimentally observed profiles. 

However, if the mentioned mechanisms are the only ones, then the measured 
probability profiles for chains of different length should look equally. They should 
differ only in the length of the central part where the probability value is constant. 
As this is not in accord with the experimental data, we suppose that in addition to 
molecular interactions there should exist another mechanism connected with the 
disorder of interlamellar structure. However, in contrast to Maroncelli et a1. 9 , who 
suppose some additional mechanism of disorder which does not depend on the 
conformational structure of molecules, in our opinion the interlamellar disorder 
can be caused by the above mentioned increasing dispersion in the chain length 
with increasing number of segments, N. The observed probability of g states of end
-chain segments therefore increases with increasing number of alkane segments9 • 

CONCLUSIONS 

The suggested qualitative model shows that the occurrence of the rotator phase 
in the phase diagrams of some alkanes might be connected with a partial increase 
of the conformational flexibility. The resulting increase of entropy is greater than 
originally thought, since also the "little" probable conformations (which have 
been neglected) effectively contribute to the conformational partition function. 
The small probability given by the Boltzmann exponent is compensated by the great 
number of ways in which these conformational states can be placed on the chain. 

On the basis of the present estimate and comparison with experimental data, the 
partial increase of conformational flexibility can even have a decisive influence on 
the existence of the rotator phase in alkanes. 
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